Sodium salicylate reduces gamma aminobutyric acid-induced current in rat spinal dorsal horn neurons.

نویسندگان

  • Han Xu
  • Neng Gong
  • Lin Chen
  • Tian-Le Xu
چکیده

Sodium salicylate is one of the nonsteroidal antiinflammatory drugs and is clinically used for antiinflammation and chronic pain relief. In the present study, we investigated the actions of sodium salicylate on gamma-aminobutyric acid type A receptor (GABA(A)) current in cultured rat spinal dorsal horn neurons. Sodium salicylate was found to reduce GABA(A) current in a reversible and concentration-dependent manner, but did not change its ion selectivity. Sodium salicylate was effective only when GABA and sodium salicylate were applied together. Application of sodium salicylate immediately before, but not during, the application of GABA did not result in a significant reduction of GABA(A) current. Our results demonstrate that sodium salicylate reversibly attenuates the GABA(A) response of dorsal horn neurons, suggesting that GABA(A) receptors in the region are pharmacological targets of sodium salicylate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Action of isoflurane on the substantia gelatinosa neurons of the adult rat spinal cord.

BACKGROUND Although isoflurane, a volatile anesthetic, can block the motor response to noxious stimulation (immobility and analgesia) and suppress autonomic responsiveness, how it exerts these effects at the neuronal level in the spinal cord is not fully understood. METHODS The effects of a clinically relevant concentration (1 rat minimum alveolar concentration [MAC]) of isoflurane on electri...

متن کامل

Modulation of gamma-aminobutyric acid A receptor function by thiopental in the rat spinal dorsal horn neurons.

To assess the actions of thiopental at the spinal dorsal horn level, we examined the effects of thiopental using the whole cell patch-clamp technique on mechanically dissociated rat spinal dorsal horn neurons. Thiopental, at large concentrations, elicited a current (I(Thio)) through activation of chloride conductance, and its threshold concentration was approximately 50 microM. I(Thio) was sens...

متن کامل

Propofol differentially inhibits the release of glutamate, γ-aminobutyric acid and glycine in the spinal dorsal horn of rats

Objective(s): Propofol (2, 6-diisopropylphenol) is an intravenous anesthetic that is commonly used for the general anesthesia. It is well known that the spinal cord is one of the working targets of general anesthesia including propofol. However, there is a lack of investigation of the effects of propofol on spinal dorsal horn which is important for the sensory transmission of nociceptive signal...

متن کامل

Actions of midazolam on excitatory transmission in dorsal horn neurons of adult rat spinal cord.

BACKGROUND Although intrathecal administration of midazolam, a water-soluble imidazobenzodiazepine derivative, has been found to produce analgesia, how it exerts this effect at the neuronal level in the spinal cord is not fully understood. METHODS The effects of midazolam on electrically evoked and spontaneous excitatory transmission were examined in lamina II neurons of adult rat spinal cord...

متن کامل

Kinetics of etomidate actions on GABA(A) receptors in the rat spinal dorsal horn neurons.

Electrophysiological properties of etomidate (ET)-induced current (I(ET)) at different concentrations and effects of ET at clinically relevant concentrations (1-10 microM) on postsynaptic GABA(A) receptor function were investigated using whole-cell patch-clamp technique in mechanically dissociated rat spinal dorsal horn neurons. The results showed that ET actions were concentration-dependent: l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroreport

دوره 16 8  شماره 

صفحات  -

تاریخ انتشار 2005